Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(2-Chloro-5-methylphenyl)succinamic acid

B. Thimme Gowda, ${ }^{\text {a* }}$ Sabine Foro ${ }^{\text {b }}$ and U. Chaithanya ${ }^{\text {a }}$

a Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 1 December 2011; accepted 19 December 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.062 ; w R$ factor $=0.128$; data-to-parameter ratio $=15.3$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClNO}_{3}$, the conformation of the $\mathrm{N}-\mathrm{H}$ bond in the amide segment is syn with respect to the ortho -Cl atom. The amide and carboxyl $\mathrm{C}=\mathrm{O}$ groups are syn to each other. Furthermore, the $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds of the carboxyl group are in syn positions with respect to each other. The dihedral angle between the benzene ring and the amide group is $47.8(2)^{\circ}$. In the crystal, molecules are connected by pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming inversion dimers. The dimers are further linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into double chains along the b-axis direction.

Related literature

For our previous studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2001); Saraswathi et al. (2011), on N-(aryl)-methanesulfonamides, see: Jayalakshmi \& Gowda (2004), on N-(aryl)arylsulfonamides, see: Gowda et al. (2005) and on N-chloroarylamides, see: Gowda et al. (1996). For modes of hydrogen bonding in the structures of carboxylic acids, see: Leiserowitz (1976). For the centrosymmetrical dimeric hydrogen-bonding association of carboxylic groups, see: Jagannathan et al. (1994).

Experimental

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClNO}_{3}$
$M_{r}=241.67$

Monoclinic, C2/c
$a=23.780$ (5) A
$b=4.7784$ (7) \AA
$c=23.892(5) \AA$
$\beta=121.20$ (1) ${ }^{\circ}$
$V=2322.2(8) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.42 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD detector diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.128$
$S=1.19$
2322 reflections
152 parameters
2 restraints

Diffraction, 2009)
$T_{\text {min }}=0.877, T_{\text {max }}=0.975$ 4399 measured reflections 2322 independent reflections 1680 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3O $\cdots \mathrm{O}^{\mathrm{i}}$	$0.83(2)$	$1.83(2)$	$2.652(4)$	$172(5)$
$\mathrm{N} 1-\mathrm{H} 1 N \cdots 1^{\text {ii }}$	$0.86(2)$	$2.08(2)$	$2.910(4)$	$163(3)$

Symmetry codes: (i) $-x-\frac{1}{2},-y+\frac{3}{2},-z$; (ii) $x, y+1, z$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BSS thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGCBSR one-time grant to faculty.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2035).

References

Gowda, B. T., Dou, S. Q. \& Weiss, A. (1996). Z. Naturforsch. Teil A, 51, 627636.

Gowda, B. T., Paulus, H. \& Fuess, H. (2001). Z. Naturforsch. Teil A, 56, 386394.

Gowda, B. T., Shetty, M. \& Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.
Jagannathan, N. R., Rajan, S. S. \& Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.
Jayalakshmi, K. L. \& Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491-500. Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Saraswathi, B. S., Foro, S. \& Gowda, B. T. (2011). Acta Cryst. E67, o2093.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

```
Acta Cryst. (2012). E68, o221 [ doi:10.1107/S1600536811054638]
```


N-(2-Chloro-5-methylphenyl)succinamic acid

B. T. Gowda, S. Foro and U. Chaithanya

Comment

The amide and sulfonamide moieties are important constituents of many biologically important compounds. As a part of our studies of the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2001; Saraswathi et al., 2011), N-(aryl)-methanesulfonamides (Jayalakshmi \& Gowda, 2004), N-(aryl)-arylsulfonamides (Gowda et al., 2005) and N-chloro-arylsulfonamides (Gowda et al., 1996), in the present work, the crystal structure of N-(2-chloro-5methylphenyl)succinamic acid (I) has been determined (Fig. 1). The conformation of the $\mathrm{N}-\mathrm{H}$ bond in the amide segment is syn to the ortho-chloro group and anti to the meta-methyl group in the benzene ring, similar to the syn conformation observed between the amide hydrogen and the ortho -Cl and anti conformation between the amide hydrogen and the meta- Cl in the benzene ring of N-(2,5-dichlorophenyl)- succinamic acid (II) (Saraswathi et al., 2011).

Further, the conformations of the amide oxygen and the carboxyl oxygen of the acid segment are syn to each other.
The $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds of the acid group are in syn position to each other, similar to that observed in (II).
The dihedral angle between the phenyl ring and the amide group is $47.8(2)^{\circ}$.
The intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds pack the molecules into infinite chains along the b-axis direction (Table 1, Fig.2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen-bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Experimental

The solution of succinic anhydride (0.01 mole) in toluene $(25 \mathrm{ml})$ was treated with the solution of 2-chloro,5-methylaniline (0.01 mole) also in toluene (20 ml), added dropwise with permanent stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with diluted hydrochloric acid to remove the unreacted 2-chloro-5-methyl-aniline. The resultant title compound was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. The product was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared and NMR spectra.

Rod like colorless single crystals used in X-ray diffraction studies were grown from ethanolic solution by slow evaporation at room temperature.

supplementary materials

Refinement

The H atoms of the NH and OH groups were located in a difference map and later restrained to the distances $\mathrm{N}-\mathrm{H}=0.86$ (2) \AA and $\mathrm{O}-\mathrm{H}=0.82$ (2) \AA, respectively. The other H atoms were positioned with idealized geometry and refined using a riding model with the aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the $U_{\text {eq }}$ of the parent atom).

Figures

Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Molecular packing of the title compound with hydrogen bonds shown as dashed lines.

N-(2-Chloro-5-methylphenyl)succinamic acid

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClNO}_{3}$
$F(000)=1008$
$M_{r}=241.67$
Monoclinic, C2/c
Hall symbol: -C 2yc
$D_{\mathrm{x}}=1.382 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1604 reflections
$a=23.780$ (5) \AA
$\theta=2.6-27.9^{\circ}$
$b=4.7784$ (7) \AA
$c=23.892(5) \AA$
$\beta=121.20(1)^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Rod, colourless
$V=2322.2(8) \AA^{3}$
$0.42 \times 0.10 \times 0.08 \mathrm{~mm}$
$Z=8$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD detector
diffractometer

Radiation source: fine-focus sealed tube	1680 reflections with $I>2 \sigma(I)$
graphite	$R_{\text {int }}=0.020$
ω and φ scans	$\theta_{\max }=26.4^{\circ}, \theta_{\min }=3.4^{\circ}$
Absorption correction: multi-scan (CrysAlis $R E D ;$ Oxford Diffraction, 2009)	$h=-29 \rightarrow 28$
$T_{\min }=0.877, T_{\max }=0.975$	$k=-4 \rightarrow 5$
4399 measured reflections	$l=-20 \rightarrow 29$

Refinement

$$
\begin{aligned}
& \text { Refinement on } F^{2} \\
& \text { Least-squares matrix: full } \\
& R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062 \\
& w R\left(F^{2}\right)=0.128
\end{aligned}
$$

$$
S=1.19
$$

2322 reflections
152 parameters
2 restraints

$$
\begin{aligned}
& 1680 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.020 \\
& \theta_{\max }=26.4^{\circ}, \theta_{\min }=3.4^{\circ} \\
& h=-29 \rightarrow 28 \\
& k=-4 \rightarrow 5 \\
& l=-20 \rightarrow 29
\end{aligned}
$$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0268 P)^{2}+6.3165 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.044$
$\Delta \rho_{\max }=0.28$ e \AA^{-3}
$\Delta \rho_{\min }=-0.25$ e \AA^{-3}

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.14042(4)$	$1.47549(19)$	$0.23661(4)$	$0.0481(3)$
O1	$-0.02815(14)$	$0.7770(5)$	$0.14193(17)$	$0.0703(9)$
O2	$-0.18862(14)$	$0.9786(7)$	$0.03462(14)$	$0.0749(9)$
O3	$-0.21661(15)$	$0.6674(7)$	$0.08465(14)$	$0.0783(10)$
H3O	$-0.2438(19)$	$0.623(10)$	$0.0462(12)$	0.094^{*}
N1	$0.01311(13)$	$1.2030(5)$	$0.14261(14)$	$0.0363(6)$
H1N	$0.0095(16)$	$1.378(4)$	$0.1481(16)$	0.044^{*}
C1	$0.06702(14)$	$1.1156(6)$	$0.13712(15)$	$0.0330(7)$
C2	$0.12917(15)$	$1.2274(7)$	$0.17838(15)$	$0.0362(7)$

C3	$0.18210(16)$	$1.1446(8)$	$0.17339(18)$	$0.0473(9)$
H3	0.2235	1.2205	0.2011	0.057^{*}
C4	$0.17314(17)$	$0.9488(8)$	$0.12704(18)$	$0.0487(9)$
H4	0.2090	0.8916	0.1243	0.058^{*}
C5	$0.11180(17)$	$0.8360(7)$	$0.08458(17)$	$0.0423(8)$
C6	$0.05926(15)$	$0.9222(7)$	$0.09027(16)$	$0.0377(8)$
H6	0.0177	0.8484	0.0620	0.045^{*}
C7	$-0.03027(15)$	$1.0299(7)$	$0.14512(16)$	$0.0377(7)$
C8	$-0.08153(15)$	$1.1768(7)$	$0.15378(18)$	$0.0418(8)$
H8A	-0.1036	1.3159	0.1196	0.050^{*}
H8B	-0.0599	1.2737	0.1955	0.050^{*}
C9	$-0.13225(16)$	$0.9767(8)$	$0.15140(17)$	$0.0452(8)$
H9A	-0.1096	0.8164	0.1788	0.054^{*}
H9B	-0.1553	1.0697	0.1698	0.054^{*}
C10	$-0.18136(16)$	$0.8754(8)$	$0.08466(19)$	$0.0450(9)$
C11	$0.1020(2)$	$0.6300(8)$	$0.03259(19)$	$0.0605(11)$
H11A	0.1074	0.4431	0.0494	0.073^{*}
H11B	0.1339	0.6646	0.0201	0.073^{*}
H11C	0.0586	0.6509	-0.0049	0.073^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0457(5)$	$0.0473(5)$	$0.0465(5)$	$-0.0107(4)$	$0.0206(4)$	$-0.0069(4)$
O1	$0.0751(19)$	$0.0230(14)$	$0.147(3)$	$-0.0019(13)$	$0.081(2)$	$-0.0023(16)$
O2	$0.0717(18)$	$0.081(2)$	$0.0607(17)$	$-0.0415(17)$	$0.0259(15)$	$-0.0011(17)$
O3	$0.072(2)$	$0.084(2)$	$0.0667(19)$	$-0.0466(18)$	$0.0269(16)$	$-0.0004(18)$
N1	$0.0339(13)$	$0.0231(13)$	$0.0559(17)$	$-0.0001(12)$	$0.0261(13)$	$-0.0033(13)$
C1	$0.0331(16)$	$0.0245(16)$	$0.0432(18)$	$0.0027(13)$	$0.0210(14)$	$0.0072(14)$
C2	$0.0366(16)$	$0.0327(18)$	$0.0381(17)$	$-0.0027(14)$	$0.0185(14)$	$0.0039(15)$
C3	$0.0334(17)$	$0.053(2)$	$0.055(2)$	$-0.0001(16)$	$0.0220(16)$	$0.0081(19)$
C4	$0.0430(19)$	$0.052(2)$	$0.061(2)$	$0.0101(18)$	$0.0338(18)$	$0.012(2)$
C5	$0.056(2)$	$0.0349(19)$	$0.0450(19)$	$0.0061(16)$	$0.0326(17)$	$0.0065(16)$
C6	$0.0382(17)$	$0.0322(18)$	$0.0430(18)$	$0.0004(14)$	$0.0212(14)$	$0.0030(15)$
C7	$0.0319(16)$	$0.0283(18)$	$0.0519(19)$	$-0.0012(14)$	$0.0210(14)$	$0.0002(16)$
C8	$0.0342(16)$	$0.0336(19)$	$0.059(2)$	$-0.0058(15)$	$0.0254(16)$	$-0.0103(17)$
C9	$0.0421(18)$	$0.045(2)$	$0.060(2)$	$-0.0081(17)$	$0.0346(17)$	$-0.0092(18)$
C10	$0.0332(17)$	$0.040(2)$	$0.065(2)$	$-0.0062(15)$	$0.0281(17)$	$0.0000(18)$
C11	$0.080(3)$	$0.052(2)$	$0.064(3)$	$0.011(2)$	$0.047(2)$	$0.004(2)$

Geometric parameters $\left({ }_{A},^{\circ}\right)$

$\mathrm{Cl1}-\mathrm{C} 2$	$1.740(3)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{O} 1-\mathrm{C} 7$	$1.214(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.387(4)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.220(4)$	$\mathrm{C} 5-\mathrm{C} 11$	$1.506(5)$
$\mathrm{O} 3-\mathrm{C} 10$	$1.300(4)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O}$	$0.832(19)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.511(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.347(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.517(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.418(4)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700

sup-4

supplementary materials

N1-H1N	0.858 (18)
C1-C6	1.388 (4)
C1-C2	1.390 (4)
C2-C3	1.382 (4)
C3-C4	1.379 (5)
C3-H3	0.9300
C4-C5	1.384 (5)
C10-O3-H3O	109 (4)
C7-N1-C1	125.0 (3)
C7-N1-H1N	117 (2)
C1-N1-H1N	118 (2)
C6- $\mathrm{C} 1-\mathrm{C} 2$	118.4 (3)
C6- $\mathrm{C} 1-\mathrm{N} 1$	121.5 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	120.1 (3)
C3-C2-C1	120.7 (3)
C3-C2-C11	119.6 (3)
C1-C2-C11	119.7 (2)
C4-C3-C2	119.6 (3)
C4-C3-H3	120.2
C2-C3-H3	120.2
C3-C4-C5	121.2 (3)
C3-C4-H4	119.4
C5-C4-H4	119.4
C4-C5-C6	118.3 (3)
C4-C5-C11	120.9 (3)
C6-C5-C11	120.9 (3)
C5-C6- ${ }^{\text {C1 }}$	121.8 (3)
C5-C6-H6	119.1
C1-C6-H6	119.1
O1-C7-N1	123.4 (3)
C7-N1-C1-C6	49.1 (5)
C7-N1-C1-C2	-132.0 (3)
C6- $12-\mathrm{C} 2-\mathrm{C} 3$	-0.9 (5)
N1-C1-C2-C3	-179.8 (3)
C6-C1-C2-Cl1	178.8 (2)
N1-C1-C2-Cl1	-0.2 (4)
C1-C2-C3-C4	-0.1 (5)
C11-C2-C3-C4	-179.7 (3)
C2-C3-C4-C5	1.0 (5)
C3-C4-C5-C6	-0.8 (5)
C3-C4-C5-C11	177.8 (3)

C8-H8B	0.9700
C9-C10	1.487 (5)
C9-H9A	0.9700
C9-H9B	0.9700
C11-H11A	0.9600
C11-H11B	0.9600
C11-H11C	0.9600
O1-C7-C8	122.3 (3)
N1-C7-C8	114.3 (3)
C7-C8-C9	112.6 (3)
C7-C8-H8A	109.1
C9-C8-H8A	109.1
C7-C8-H8B	109.1
C9-C8-H8B	109.1
H8A-C8-H8B	107.8
C10-C9-C8	114.4 (3)
C10-C9-H9A	108.7
C8-C9-H9A	108.7
C10-C9-H9B	108.7
C8-C9-H9B	108.7
H9A-C9-H9B	107.6
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{O} 3$	123.0 (4)
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	123.6 (3)
O3-C10-C9	113.4 (3)
C5-C11-H11A	109.5
C5-C11-H11B	109.5
H11A-C11-H11B	109.5
C5-C11-H11C	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
C4-C5-C6-C1	-0.2 (5)
C11-C5-C6-C1	-178.8 (3)
C2-C1-C6-C5	1.0 (5)
N1-C1-C6-C5	179.9 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$	-1.1 (6)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	177.6 (3)
O1-C7-C8-C9	-5.4 (5)
N1-C7-C8-C9	175.8 (3)
C7-C8-C9-C10	-75.1 (4)
C8-C9-C10-O2	-12.7 (5)
C8-C9-C10-O3	168.1 (3)

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 \mathrm{O} \cdots \mathrm{O}^{\mathrm{i}}$	$0.83(2)$	$1.83(2)$	$2.652(4)$	$172(5)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.86(2)$	$2.08(2)$	$2.910(4)$	$163(3)$

Symmetry codes: (i) $-x-1 / 2,-y+3 / 2,-z$; (ii) $x, y+1, z$.

supplementary materials

Fig. 1

Fig. 2

